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Convection-driven dynamos
in a rotating plane layer
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(Received 17 June 1998 and in revised form 19 October 1999)

The plane layer Childress–Soward dynamo model, consisting of a rotating layer of
electrically conducting fluid between horizontal planes heated from below, is studied.
Solutions periodic in the horizontal directions are sought, with electrically insulating
boundary conditions applied. The large Prandtl number limit is used.

Fully three-dimensional convection-driven dynamos have been studied numerically
for this problem. Both the kinematic and the magnetically saturated regimes are
studied, and a simple model of the dynamo mechanism is proposed. The dependence
of the dynamo on the Rayleigh number, Ekman number and diffusivity ratio is
studied, and the role of Taylor’s constraint in low Ekman number convection-driven
dynamos is considered.

1. Introduction
Considerable progress in the understanding of the geodynamo has been made in

the last few years. Numerical simulations of convection in the Earth’s liquid core show
some remarkable similarities with relevant geophysical data (Glatzmaier & Roberts
1995a; Jones, Longbottom & Hollerbach 1995). The simulations generate fields of
approximately the right strength and morphology, which can undergo reversals similar
to those of the geodynamo (Glatzmaier & Roberts 1995b), and the secular variation
in the simulations broadly resembles that of the geomagnetic field.

Although the progress made in geodynamo simulations is very encouraging for the
basic model, our understanding of nonlinear convection-driven dynamos is still very
incomplete. In order to eliminate numerical instabilities, all the simulations referred
to above have had to introduce hyperviscosity into the governing equations, and
as recently pointed out by Zhang & Jones (1997) this can affect the dynamics of
rapidly rotating fluids, perhaps significantly. Furthermore, none of the simulations
have yet reached the very low Ekman number that obtains in the Earth’s core which
is O(10−15) if laminar values of the viscosity are used, and is still O(10−8) even
if turbulent viscosity is assumed. By contrast, the numerical solutions in spherical
geometry seldom have E less than 10−4 unless hyperviscosity is used (or very short
runs performed); also, because of the very large amounts of CPU time required by a
spherical dynamo code, very little exploration of parameter space has been possible.
The laminar value of q, the ratio of thermal to magnetic diffusivity, is very small in
the Earth, but in the numerical models q cannot be made small because then very
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large Rayleigh numbers are required for dynamo action to occur; this creates serious
resolution problems.

In view of these difficulties, it is natural to look at the the plane layer model
discussed here to enhance our understanding of nonlinear convection-driven dynamos.
The pseudo-spectral technique has so far proved to be the most effective way of
solving convection-driven dynamos in spherical geometry, and we use this method
here for the plane layer problem also. The plane layer model has some significant
computational advantages over the spherical geometry problem; it allows the use of
fast Fourier transforms in all three spatial directions, thus allowing a fully three-
dimensional simulation to be performed relatively cheaply. This is not possible in the
spherical case, because no practically useful fast Legendre transform exists, so that
transforming between the spherical harmonic spectral space and physical space is
very slow. A further advantage of the plane layer model is that the storage required
is very much less than that used by a spherical code. In consequence, exploration and
understanding of the dynamical processes involved in the three-dimensional dynamo
becomes a realistic possibility. Nevertheless, as we see below, there is a major difficulty
with the spherical geometry dynamo that also affects the plane layer problem: as the
Ekman number is reduced, the timestep has to be reduced in order to maintain
numerical stability (see e.g. Walker, Barenghi & Jones 1998). This prevents us from
reaching very low Ekman number.

The first investigations of the plane layer model were those of Childress & Soward
(1972), Soward (1974), Fautrelle & Childress (1982), and Meneguzzi & Pouquet (1989),
who established that dynamo action occurs in this problem, and that subcritical
behaviour can occur. More recently, St. Pierre (1994) investigated the generation of
strong fields in the plane layer model. This work builds on that of St. Pierre; however,
partly because of his experience, we have made some changes to the boundary
conditions on the horizontal bounding planes.

The important issues for our problem are (i) to establish the nature of convection
in the absence of a magnetic field; (ii) to discover whether the convection generates
a magnetic field; (iii) to investigate the mechanism by which the dynamo saturates;
and (iv) to determine whether Taylor’s (1963) constraint is satisfied at low Ekman
number. If these issues can be answered, it should be possible to gain some insight
into how the field strength and morphology vary with the input parameters.

Issue (i) is an essential pre-requisite in understanding the problem. As we shall see,
the magnetic field does affect the nature of the convection somewhat when saturation
is reached, but many of the basic features of the non-magnetic convection persist
even at quite large field strengths. Problem (ii) is not such a simple matter as might
be supposed; several times in the past flows have been proposed in the belief that
they can act as dynamos, a belief that could not be unequivocally supported even
after detailed investigations. Matthews (1999) has recently performed some analysis
on the kinematic dynamo problem with plane layer convection, and Brandenburg et
al. (1996) looked at the compressible convection problem. Problem (iii) has been the
subject of considerable speculation, but is still very uncertain. Here we explore the
parametric dependence of the saturated field strength, and discuss a simple model
which may be relevant. Problem (iv) is another difficult issue: a number of nonlinear
α2-dynamo models (Soward & Jones 1983) verified the Malkus–Proctor scenario, in
which the dynamo evolves into a Taylor state as it moves further into the nonlinear
regime, but not all models do this (e.g. Jones & Roberts 1990). Another possibility
is the development of large geostrophic flows, along the lines first suggested by
Braginsky (1975) in his two-dimensional model-Z dynamos.
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2. Model description and governing equations
We consider a conducting fluid layer confined between horizontal boundaries at

z = ± 1
2
d. We seek solutions in the form of convection cells, i.e. solutions in a ‘box’ that

are periodic in both the x-direction (period 2πd/α) and the y-direction (period 2πd/β).
Most attention has been paid to the case of a cubical cell, that is α = β = 2π. Note
that this does preclude the possibility of long-wavelength fields developing; recent
work on magnetoconvection (Weiss et al. 1996) has shown that long-wavelength fields
can develop, but to follow these demands an enhanced computing requirement, so
that the advantages of the plane layer model are reduced. It seems sensible at this
stage to address the problem with O(d) horizontal wavelengths first.

The magnetic diffusivity is η, the thermal diffusivity κ and the kinematic viscosity
ν. The layer is rotating at angular velocity Ω about a vertical axis in the z-direction,
and gravity g acts in the −z-direction. The coefficient of thermal expansion is ᾱ and
the temperature difference across the layer is β̄d.

In the Earth’s core, the inertial terms in the momentum equation are small compared
with the Coriolis term (low Rossby number) and are often neglected, as in the high
Prandtl number limit (ν/κ → ∞) considered here. Taking the high Prandtl number
limit eliminates any high-frequency inertial modes from the problem. Taking the
lengthscale as the layer depth d, the timescale as the magnetic diffusion time d2/η, the
magnetic field unit as (2Ωρµη)1/2 (where ρ is the fluid density and µ the permeability)
and the temperature unit as β̄d, the governing equations are

ẑ × u = −∇p+ j × B + qRaθẑ + E∇2u, (2.1)

∂B

∂t
= ∇× (u× B) + ∇2B, (2.2)

∂θ

∂t
+ u · ∇θ = q∇2θ + u · ẑ, (2.3)

∇ · B = 0, (2.4)

∇ · u = 0, (2.5)

where B is the magnetic field, θ is the difference between the actual temperature
gradient and the static temperature gradient and j = ∇ × B is the current density.
The three dimensionless parameters are E, the Ekman number, Ra, the Rayleigh
number and q, the diffusivity ratio defined by

E =
ν

2Ωd2
, Ra =

gᾱβ̄d2

2Ωκ
, q =

κ

η
.

We are here adopting the definition of Ra usual in studies of rapidly rotating fluids;
the Rayleigh number more commonly employed in studies of non-rotating convection
is (e.g. Chandrasekar 1961) gᾱβ̄d4/κν = Ra/E.

The linear theory for this plane layer problem, with no restrictions on the allowed
horizontal wavelengths, has recently been further studied by Roberts & Jones (1999).

The velocity and magnetic field are expanded in toroidal and poloidal components,
but in the plane layer geometry horizontally averaged horizontal components must
be added explicitly to obtain the complete representation:

u = ∇× eẑ + ∇× ∇× fẑ +Uxx̂+Uyŷ, (2.6)

B = ∇× gẑ + ∇× ∇× hẑ + bxx̂+ byŷ. (2.7)
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Here Ux and Uy define what we call ‘the mean velocity’, and bx and by define ‘the
mean field’; they are functions of z and t alone.

The scalar equations solved are formed by taking the z-components of the curl and
of the curl curl of equation (2.1) and the z-components of (2.2) and of the curl of
(2.2):

∇2
H

∂f

∂z
+ E∇2∇2

He = F1, (2.8)

∇2
H

∂e

∂z
− E∇4∇2

Hf = F2 − qRa∇2
Hθ, (2.9)

∇2
H

∂h

∂t
− ∇2∇2

Hh = −G1, (2.10)

∇2
H

∂g

∂t
− ∇2∇2

Hg = −G2, (2.11)

where ∇2
H denotes the horizontal Laplacian, and

F1 = ẑ · ∇× (j × B), F2 = ẑ · ∇× ∇× (j × B), (2.12a, b)

G1 = ẑ · ∇× (u× B), G2 = ẑ · ∇× ∇× (u× B). (2.13a, b)

Our fifth scalar equation is (2.3).
These equations must be supplemented by the equations for the horizontally

averaged components:

−Uy = E
∂2Ux

∂z2
+ x̂ · 〈j × B〉, (2.14)

Ux = E
∂2Uy

∂z2
+ ŷ · 〈j × B〉, (2.15)

∂bx

∂t
=
∂2bx

∂z2
+ x̂ · 〈∇× (u× B)〉, (2.16)

∂by

∂t
=
∂2by

∂z2
+ ŷ · 〈∇× (u× B)〉, (2.17)

where 〈 〉 denotes the horizontal average

〈f〉 =
αβ

4π2

∫
f dx dy.

The choice of boundary conditions is rather important. The geodynamo simulations
suggest that the Ekman layers can play an important role in the dynamo process, so
we have adopted no-slip velocity boundary conditions,

e = f =
∂f

∂z
= Ux = Uy = 0 on z = ± 1

2
. (2.18)

St. Pierre’s solutions using perfectly conducting boundaries led to a build up of field
near the boundaries, an undesirable feature from a numerical point of view. In the
Earth, insulating boundary conditions are a reasonable approximation at the core–
mantle boundary; the conductivity of the inner core is however a significant feature
in geodynamo modelling. Here we assume that there is electrically insulating material
above and below the conducting fluid layer, which avoids these numerical difficulties.
The magnetic field outside the fluid layer is then current-free; using (2.7), jz = 0
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implies g = 0 in the insulators, and jx = jy = 0 implies ∇2h = 0 there. Zero current in
the insulators implies that the mean field there, (bx, by, 0), must be constant in z. We
could take this constant to be non-zero, but this would correspond to the problem of
dynamo action in an imposed external field, which we do not address in this paper.
We therefore assume the field tends to zero at large distance from the layer, so that
in the insulators bx = by = 0. Continuity of tangential field then requires

g = bx = by = 0 on z = ± 1
2
, (2.19)

and since each component of the potential field h must decay exponentially away
from the layer, continuity of h and its vertical derivative implies that

∂hlm

∂z
= ∓a hlm on z = ± 1

2
, (2.20)

where hlm denotes the Fourier component of h with wavenumber lα in the x-direction
and mβ in the y-direction, and which therefore has a total wavenumber of a =
(l2α2 + m2β2)1/2. The temperature condition is

θ = 0 on z = ± 1
2
. (2.21)

The equations are solved by the pseudo-spectral method, a brief description being
given in the Appendix. The fields are expanded in Fourier series in x and y, and
Chebyshev series in z. The Fourier series are truncated at the Nx and Ny levels,
so only harmonics in the range (−Nx,Nx) and (−Ny,Ny) are retained, and Nz

Chebyshev components are retained. We have not imposed any particular symmetry
on the solutions; because of the Boussinesq symmetry and the periodic boundary
conditions many symmetric solutions exist. In choosing the initial conditions, care
must be taken to make sure that a complete set is selected. This was done by giving
each temperature and magnetic field component in the spectral expansion a small
random value. Note that because the inertial terms are ignored, initial values are not
required for the velocity perturbations.

As we shall see below, the mean components of the magnetic field, bx and by , play
an important role in the dynamo process. If we integrate the x-component of the
induction equation over the plane area x = constant, 0 6 y 6 2π/β, − 1

2
6 z 6 1

2
,

the surface integral of ∇ × (u × B) vanishes, because u vanishes on the horizontal
boundaries, and the contributions at y = 0 and y = 2π/β cancel by the periodicity
condition. It follows that

∂

∂t

∫
S

(x̂ · B) dy dz = −
∫
C

(∇× B) · dl, (2.22)

where C is the perimeter of the plane area. If we average (2.22) over x, we obtain

∂

∂t

∫
S

bx dz =
∂bx

∂z

∣∣∣∣
z=1/2

− ∂bx

∂z

∣∣∣∣
z=−1/2

, (2.23)

and a similar result holds for by . Now if the boundaries were perfect conductors,

(2.23) and its y-analogy would imply that b̄x and b̄y , the vertical average of bx and
by , would be zero, i.e. no net mean field could develop. With our insulating boundary
conditions, this is no longer true: a net mean field is possible. However, the mean field
cannot be maintained with the same sign everywhere: if, for example, bx were positive
for all z in the interior, then the right-hand side of (2.23) would be be negative, so
that b̄x would decrease.

Other quantities of interest are the kinetic and magnetic energies. These can be
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divided into toroidal, poloidal and mean parts. After various integrations the toroidal
magnetic energy reduces to

T =
1

2

∫
(∇Hg)2 dv. (2.24)

The poloidal magnetic energy in the layer is

Pl =
1

2

∫ [(
∇H ∂h

∂z

)2

+ (∇2
Hh)

2

]
dv, (2.25)

and the poloidal energy outside the layer (in the vacuum region) can be written as a
surface integral over, A, the two horizontal surfaces at z = ± 1

2
:

Pv =
1

2

∫
A

∇Hh · ∇H ∂h
∂z

dS. (2.26)

The total poloidal contribution to the magnetic energy is P = Pl + Pv . The mean
field contributes

M =
1

2

∫
[b2
x + b2

y] dv, (2.27)

and the total magnetic energy is Em =T+P+M.
Analogous expressions for the kinetic energy Eu = T +P +M, with the e, f, Ux

and Uy replacing the magnetic quantities in (2.24) to (2.27) hold, except that there is
no contribution from the vacuum region in this case.

It is useful to define the magnetic and kinetic energies in each l, m mode separately,
which we write as Em(l, m) and Eu(l, m) respectively. It is also convenient to introduce
the root-mean-square magnetic field and velocity in each mode defined as

Blm =
√

2Em(l, m), and Ulm =
√

2Eu(l, m). (2.28)

Important derived quantities for understanding convection-driven dynamos are the
magnetic Reynolds number and the Elsasser number, which is a measure of the relative
strength of the Lorentz force and the Coriolis force. Our dimensionless scaling means
that dimensionless velocities can be interpreted directly as local magnetic Reynolds
numbers Rm. Our scaling for the field means that the square of the dimensionless field
strength is a measure of the local Elsasser number Λ. Occasionally it is convenient to
have an average value of Rm for comparisons, and we adopt

√
2Eu for this.

3. Non-magnetic convection
Since comparisons between the working convective dynamo and the non-magnetic

layer are revealing, we devote this section to the latter. The parameter q has no
meaning when B ≡ 0. It can be scaled out of the governing equations (2.1), (2.3) and
(2.5) by the simple transformation

u→ qu, p→ qp, t→ t/q. (3.1)

In figures 2 and 3 below, time is measured in units of d2/q, which is equivalent to
taking q = 1.

3.1. Marginal convection

Consider first marginal convection. Since there is no preferred horizontal direction,
it suffices to consider infinitesimal disturbances with one wavenumber, α. As is well-
known (e.g. Chandrasekhar 1961), in our infinite Prandtl number limit, overstability
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E = 10−3 E = 2× 10−4

m\l 0 1 2 3 0 1 2 3

0 95.4554 74.6686 162.3890 243.5087 149.1197 119.9983
1 95.4554 75.2682 83.8008 191.2088 243.5087 191.5763 137.6978 120.1579
2 74.6686 83.8008 137.0776 297.9538 149.1197 137.6978 121.3732 128.3037
3 162.3890 191.2088 297.9538 541.1425 119.9983 120.1579 128.3037 162.3404

Table 1. Critical Rayleigh numbers for modes with wavenumbers 2lπ and 2mπ.

cannot occur, so convection onsets directly with a pitchfork bifurcation at a critical
Rayleigh number Rac. At low Prandtl numbers, this is no longer the case (Zhang &
Roberts 1997, 1998), and high-frequency inertial waves are excited. The wavenumber
of the first mode to become unstable in the unbounded plane layer is denoted by αc.
This increases as E → 0; in fact, αc = O(E−1/3).

As explained above, it is not practical to study the unrestricted plane layer for
computational reasons. We therefore restrict our attention to solutions ‘in a box’, i.e.
those that are periodic in both the x- and y-directions, with wavelengths of 2π/α and
2π/β respectively. Thus l and m are restricted to integral values, and we denote a
mode of wavenumber lα in the x-direction and mβ in the y-direction by (l, m).

Two box sizes were considered: the cubic box with α = β = 2π, so the box has the
same wavelength as the layer depth in both x- and y-directions, and a rectangular box
with α = β = 2

√
2π, a taller thinner box. The reason for investigating the narrower

box is that, as we shall see below, dynamo action onsets at a lower magnetic Reynolds
number in the narrower box, so that its behaviour can be investigated more readily.
It would be of interest to consider wider boxes, but unfortunately this is expensive
computationally.

Table 1 shows the marginal Rayleigh number for the lowest modes (i.e. those of
smallest l and m) in the case of the cubical box at E = 10−3 (left) and at E = 2×10−4

(right).

3.2. Finite-amplitude convection

As suggested by the results of table 1 for the marginal case, convection at finite ampli-
tude is dominated by long-wavelength modes though not by the longest wavelength
modes: of those shown on the left-hand side of the table, the (2, 0), (0, 2), (1, 1), (2, 1)
and (1, 2) modes are all more easily excited than the (1, 0) and (0, 1) modes.

Although at E = 10−3 the modes (2, 0) and (0, 2) are the first to become excited as
Ra is increased, in the mildly supercritical regime they soon become less important
than the (1, 1) and (1, −1) modes. Thus at Ra = 95 numerical integration of the
time-dependent convection equations leads to a steady finite-amplitude state in which
either the (1, 1) or (1,−1) mode dominates depending on the starting conditions (see
figures 1a, b). If the Rayleigh number is increased, the modes (1, 0) and (0, 1) start to
play a more significant role. At Ra = 125 we see the appearance of a stable heteroclinic
orbit, as found in a related problem by Busse & Heikes (1980) and Soward (1984). The
existence of this heteroclinic orbit depends on the symmetry of our problem about
the midplane z = 0. The heteroclinic orbits observed by Busse & Heikes were found
from the amplitude equations, but here we see that they exist even in a full numerical
integration. The situation is more complex than that analysed by Busse & Heikes and
by Soward, for we have four modes interacting (1, 0), (1, 1), (0, 1) and (1,−1). The pair
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(a) (b)

[–0.1429, 0.1429]

Figure 1. Convection without magnetic field at Ra = 95, E = 0.001 in the (x, y)-plane at z = 0
with α = β = 2π. Contours of temperature at intervals of 0.02 for (a) the (1,−1) roll, (b) the (1, 1)
roll. In this and subsequent similar figures dashed contours have negative values, the bold contour
is the zero level. The values in brackets denote the minimum and maximum values attained by the
contoured quantity.

0

–2.5

–5.0

–7.5

3 4 Time

log10 5

Mode (1, –1)Mode (0, –1)Mode (1, –1)Mode (1, 0)

521

Figure 2. The logarithm of the root-mean-square velocity, log10Ulm, of the modes (1, 0), (1, 1), (0, 1)
and (1,−1), as a function of time for Ra = 125, E = 0.001, α = β = 2π, showing the heteroclinic
cycle.

(1, 1) and (1,−1) dominate over the other two in the sense that the trajectories spend
more time in their vicinity than they do in the vicinity of (1, 0) and (0, 1). Nevertheless,
the Küppers–Lortz instability (Küppers & Lortz 1969) is effective at Ra = 125, and
the modes cycle round the sequence (1, 0) → (1, 1) → (0, 1) → (1,−1) → (1, 0), so
that the direction of the rolls turns in an anticlockwise direction as viewed from above
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0.425

Figure 3. As for figure 2 but the amplitudes rather than their logarithms are shown. (a) Ra = 500,

E = 0.001, α = β = 2π; (b) Ra = 1000, E = 0.001, α = β = 2
√

2π.

(which corresponds to eastward propagation, as found in the primary bifurcation in
spherical geometry) but ever more slowly. In figure 2, the amplitudes of Ulm, the
root-mean-square velocity of these modes, is plotted as a function of time. After a
long period of integration the trajectories spend an ever increasing time close to states
with alternately the (1, 1) and the (1,−1) modes dominant. Eventually, rounding error
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Figure 4. Averaged energy log10 Eu(lm) as a function of l, m for Ra = 1000, E = 0.001, α = β = 2π.

prevents the solution from continuing to approach the heteroclinic orbit, and some
long but finite period is established. The numerical solutions shed some light on the
reason for the approach to heteroclinicity. While the solution is close to the (1, 1)
solution, the (0, 1) solution grows by the Küppers–Lortz instability, but the (1, 0) mode
decays at a faster rate. In consequence, when the (0, 1) mode finally takes over from
the (1, 1) mode, the (1, 0) mode has a very small amplitude indeed. In consequence,
when the (1, 0) growth phase occurs, it takes even longer to bring it up to parity than
during the preceding growth phase. In this way, the succeeding growth phases take
longer and longer, and the rotation period tends to infinity.

If Ra is further increased the heteroclinic orbit becomes unstable. A complete
analysis of the bifurcations in this region has not been performed as the behaviour is
rather complex. Steady (0, 1) and (1, 0) solutions can be found in periodic windows,
but by Ra = 500 chaotic time-dependence is found; Ulm is plotted in figure 3(a) as a
function of time (over one thermal diffusion time) for each of the four modes listed
above for E = 10−3 with α = β = 2π. Although the time-behaviour is no longer simple
the modes still alternate in time, though now sustained periods of close proximity
to one dominant mode do not occur. Figure 3(b) presents the equivalent picture for
Ra = 1000, E = 10−3 with α = β = 2

√
2π. Note that the increase in Rayleigh number

has increased the velocities and hence the magnetic Reynolds number, and has also
increased the frequency of oscillation. Another difference is that in the narrower box
the modes (0, 1) and (1, 0) dominate over the (1, 1) and (1,−1) modes as might be
expected.

Once the Rayleigh number is large enough for the chaotic Küppers–Lortz regime
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[–0.5000, 0.5000](a) [–261.4636, 205.5373](b)

[–366.9511, 365.9441](c) [–278.4071, 271.6866](d )

Figure 5. A snapshot of convection in the (y, z)-plane for the case Ra = 500, E = 0.001, α = β = 2π.
(a) Temperature at intervals of 0.1; (b) uz at intervals of 25.0; (c) ux at intervals of 40.0. (d) uy at
intervals of 30.0.

to become established, the nature of the convection did not change substantially
with further increase of Ra, at least up to Ra about 20 times critical, which was the
upper limit of Ra that we considered. For Rayleigh numbers of this order, reasonable
solutions could be found without using very large truncations; the distribution of
energy over the modes is shown in figure 4 for Ra = 1000, E = 10−3, with Nx = Ny =
Nz = 16. The procedure is to average the energy of each mode over time and then
plot it on a logarithmic scale. The energy in the modes with |l|+ |m| 6 16 is about four
orders of magnitude less than the energy in the low-order modes. A snapshot of the
flow in the (y, z)-plane for Ra = 500, E = 10−3 with α = β = 2π is shown in figure 5.
Note that the vertical velocity correlates well with the temperature, as we would
expect. The flow was not in a pure x-roll state at the time of the snapshot, but was
approximately so, and the y-component of velocity is much as would be anticipated
from continuity with the vertical flow. The x-component of velocity also has the
form that is expected in rotating convection rolls: in non-rotating two-dimensional
convection the fluid particles move on planes perpendicular to the roll-axis, but in
rotating convection the plane containing the streamlines is rotated so it is no longer
perpendicular to the roll axis (see p. 109 of Chandrasekhar 1961). In consequence,
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Run Ra E q α β Nx Ny Nz

A 500 10−3 5 2π 2π 32 32 24
B 500 2× 10−4 5 2π 2π 24 24 24
C 500 10−3 1 2π 2π 16 16 16
D 500 2× 10−4 1 2π 2π 24 24 24
E 1500 10−3 1 2π 2π 24 24 24
F 1000 10−3 1 2π 2π 24 24 24

G 1000 10−3 1 2
√

2π 2
√

2π 16 16 16

Table 2. Parameters for the runs studied.

at low E there is a strong flow parallel to the roll axis more or less in phase with
the y-component of velocity, and this is quite evident in figure 5. Note also that the
flow to and from the rigid boundaries gives rise to strong horizontal flows, through
the Ekman layers. The Chebyshev technique resolves these layers efficiently, but
nevertheless more vertical modes are required when E is decreased.

4. The plane layer dynamo
All three-dimensional dynamo simulations require substantial computer resources,

even in this comparatively simple Cartesian geometry. Our freedom to explore param-
eter space is therefore limited and we must avoid situations where long initial transient
times are needed to determine the nonlinear behaviour of the system. Situations where
the convection can spend long periods in one pattern and then move into another
are to be avoided if possible: there is clearly a danger of ‘false’ dynamo action if the
pattern in which the convection is trapped for a long time is favourable for magnetic
field growth, giving the impression that the system is a dynamo, even though the field
decays to zero when that pattern is lost. An example of such behaviour has been
given recently by Brummell, Cattaneo & Tobias (1998).

The cases which have been considered in detail are shown in table 2. The truncation
parameters shown are typical; some (usually shorter) runs were performed at larger
truncations, to check resolution.

4.1. The general effect of varying the parameters

The effect of changing q is perhaps the simplest to understand. If the magnetic field
is infinitesimal or so weak as to have no significant effect on the fluid motions, the
system is said to be in a ‘kinematic’ state. The fluid motions can be solved for first
and, armed with that u, we can determine B by solving (2.2), (2.4) and the appropriate
boundary conditions. As we saw in § 3, the fluid velocity is independent of η and
therefore of q. An increase in q merely scales up the magnetic Reynolds number,
so that, at q = 5 for example, the convective velocity and hence Rm are simply 5
times greater, i.e. the velocities in figures 3 and 5 when multiplied by 5 give the
corresponding q = 5 flows. Such an increase in Rm has, of course, a substantial effect
on the evolution of B, and the solution may quickly be driven from the kinematic
regime and into a magnetohydrodynamic state where the back reaction of the field
on the flow cannot be ignored. Computationally, the disadvantage of increasing q
is that finer scale magnetic structures occur, requiring increased resolution. We note
here that we shall later broaden the use of the term ‘kinematic’ by also using it to
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describe solutions where the magnetic field, though not infinitesimal, is insufficiently
strong enough to alter the magnitude or character of the flow significantly.

Increasing Ra increases the convective velocity, and hence also raises Rm. Thus at
fixed q one would expect dynamo action to occur provided Ra is large enough. The
effect of varying E is less easily predicted. As E is reduced, the dominant horizontal
wavelengths shorten, and the critical Rayleigh number increases. However, in the
range of numerically accessible E the rise in Rac is not great, and the flow is strongly
convectively supercritical when the chaotic Küppers–Lortz regime is reached. We
expect rotation to enhance the helicity, so we may expect lower values of E to favour
dynamo action, and this is consistent with our results.

4.2. Onset of dynamo action

Since it was anticipated that small E would favour dynamo action, our first numerical
run (‘Run A’) assumed E = 0.001 and with R = 500 and q = 5. The wavenumbers cho-
sen were α = β = 2π; the truncation parameters were set at Nx = Ny = 32, Nz = 24
though, in the magnetically saturated regime, a smaller truncation is adequate for
reasons discussed below. Because the system is chaotic, runs with different trunca-
tions diverge quite quickly even when started from the same initial conditions. The
starting procedure adopted was first to run the convection-only code (the code with
the magnetic field switched off, starting with a small random seed temperature dis-
turbance). Since the Rayleigh number is well above the critical value for convection,
the disturbance grows rapidly. After the transients in the convection-only flow had
disappeared, a small random magnetic field seed field was switched on. Care had to
be taken to ensure all possible wavenumbers were present in the seed fields; in one
example run, a seed field containing only modes of even l + m was imposed. Modes
of odd l +m were then not induced by the nonlinear interactions, and remained zero
throughout the calculation. The behaviour of the resulting solution was then quite
different from typical solutions when odd l + m modes are also present.

The logarithm of the magnetic energy in the toroidal, poloidal and mean compo-
nents of the field are shown in figure 6(a), where it is clear that all components of
the field grow until a saturated state is reached. Two phases are evident: a regime
of kinematic growth where the Lorentz force is comparatively negligible followed by
a magnetically saturated regime where the Lorentz force controls the magnetic field
amplitude.

The second run shown in figure 6(b) (Run G) is for α = β = 2
√

2π, q = 1,
Ra = 1000. At these values of q and Ra the cubical box solution was not a kinematic
dynamo; the seed magnetic field decayed slowly. By narrowing the box by a factor
of
√

2 in both directions a rather strong kinematic growth was obtained. A further
advantage of this solution is that, as growth is obtained at comparatively low magnetic
Reynolds number, a truncation of Nx = Ny = Nz = 16 is adequate. (A run with a
truncation of Nx = Ny = Nz = 24 grew at the same rate and to the same saturation
level.)

Interestingly, although the cubical box α = β = 2π does not give a kinematic
dynamo at Ra = 1000, q = 1, E = 10−3, a completely stable nonlinear dynamo
can be obtained at these parameters by starting with a fully developed magnetic
field taken from a solution at different parameter values (the Run A values were
generally used). Indeed, a stable nonlinear dynamo was obtained at Ra = 500, q = 1,
E = 10−3 in the cubical box, as shown in figure 6(c). Thus the problem of magnetic
field generation is quite subcritical; the magnetic field acts on the flow in a way that
aids the field generation process. It should however be noted that this effect may
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Figure 6. Magnetic energy as a function of time for (a) Run A (Ra = 500, q = 5, E = 0.001,

α = β = 2π). (b) Run G (Ra = 1000, q = 1, E = 0.001, α = β = 2
√

2π). (c) Run C (Ra = 500, q = 1,
E = 0.001, α = β = 2π); this case is subcritical only. The toroidal, poloidal and mean field energies,
log10T, log10P and log10M, respectively, are plotted.
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well depend on the size of the periodic box. A possible reason why the narrower
boxes are preferred for field generation is that for these boxes the roll solutions (1, 0)
and (0, 1) are more favoured, and the convection pattern, although chaotic, spends
much more time alternating between these modes. This form of convection appears
to favour dynamo action. In the cubical periodic box, all four modes (1, 0), (1, 1),
(0, 1), and (1,−1) alternate rather randomly (see figure 3) which seems less favourable
for dynamo action. When the magnetic field is present, there is a tendency for the
modes of the longer wavelength, namely the (1, 0) and (0, 1) rolls, to dominate even in
the cubical box, thus producing the convection pattern most favourable for dynamo
action.

4.3. Kinematic regime

Although the field energy fluctuates during the growth phase, there is a fairly well-
defined growth rate in this phase. Both Runs A and G showed similar behaviour
during the growth phase. The flow in the kinematic regime is of course much the
same as in non-magnetic chaotic convection.

The morphology of the magnetic field is rather different during the kinematic
phase from that in the saturated regime analysed below. The growing field consists
of ‘cigar-like’ structures in which high wavenumbers dominate. A snapshot of the
field during the kinematic growth phase is shown in figure 7. The nature of the
cigar-like structures is best seen in an isosurface plot on which the surface at which
|B| attains 40% of its maximum value; see figure 7(e). The volume enclosed by
this surface is a remarkably small percentage of the total volume of the periodic
box, showing the concentrated nature of the generated fields. Similar behaviour has
been found in fast dynamo simulations (Childress & Gilbert 1995). A snapshot of
the two-dimensional energy spectrum (over modes (l, m)) in the kinematic regime is
displayed in figure 8. Figure 8(a) shows log10 Eu(l, m), the power spectrum of u and
figure 8(b) shows log10 Em(l, m), the power spectrum of B; these snapshots were taken
from the kinematic part of Run A. Note that the power spectrum of u falls off much
more rapidly than the power spectrum B, reflecting the small-scale field structures
generated by the kinematic dynamo.

The growth of the magnetic field is somewhat erratic on short timescales, with
phases of little or no growth followed by spurts of strong activity. This reflects the
fact that the convection is time-dependent, with a fluctuating convection pattern; for
some patterns strong field growth occurs, others merely enhance magnetic dissipation.
Nevertheless, averaged over the whole kinematic phase, the growth is evidently
exponential with a reasonably well-defined growth rate.

4.4. Saturated regime

In both the runs where kinematic dynamo action has been established, there is a
fairly well-defined time at which the field ceases to grow, and a magnetically saturated
regime, with a statistically steady field strength, is reached. In the subcritical cases
(Runs C, E and F) the form of the saturated state was broadly similar to the Runs A
and G which are kinematic dynamos. The Küppers–Lortz mechanism still operates,
with the convection having the form of an approximately two-dimensional roll which
rotates irregularly, and the mean component of the magnetic field also rotates in such
a way as to be approximately lined up with the roll axis; Soward (1974) noted that
a single roll with rotating orientation can act as a dynamo. A similar scenario, but
without the effect of rotation, has been noted by Gog et al. (1999).

A snapshot of the saturated field and flow taken from Run C is shown in figure 9.
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(e)

Figure 7. A snapshot of magnetic field in the (x, y)-plane z = 0.3 for the case Ra = 500, E = 0.001,
q = 5, α = β = 2π (Run A) in the kinematic regime. (a) Temperature at intervals of 0.04; (b) Bz
at intervals of 0.001; (c) Bx at intervals of 0.001; (d) By at intervals of 0.001; (e) Isosurface of the
magnetic field strength at 40% of the peak field.
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The temperature contours in the (x, y)-plane displayed in figure 9(a) reveal that the
convection at this time is approximately an x-roll in which the (0, 1) component is
dominant. The vertical field plot (figure 9(b)) confirms this. The view in the (y, z)-
plane, perpendicular to the roll, shows a hot rising plume and a cold descending
plume (compare figures 9c and 9h). Note that the negative By field in figure 9(f) has
been stretched out into vertical field by the plumes; see figure 9(d). (The magnitude
of the positive By field at the centre of the cell is much weaker than the negative By
field nearer the boundaries.) This vertical field has opposite signs on either side of the
plume as expected; this effect can also be seen in figure 9(b). The flow along the roll is
seen in figure 9(g) (which may be compared with figure 5) and this flow stretches out
x-field which is predominantly positive in the central regions and negative near the
boundaries. In the next section we put these observations together to form a model
of the dynamo generation process.

Note that the final state has no symmetry about the mid-plane, as we would expect
given that there is no particular symmetry in the horizontal pattern. Modes with
uz symmetric about z = 0 and ux and uy antisymmetric are preferred at onset, and
even in the the strongly nonlinear regime the flow shows a tendency to adopt this
symmetry approximately.

The time-dependence in the saturated state is illustrated in figures 10(a) and 10(b),
which are for Run C parameter values. In figure 10(a) the velocity amplitudes of the
four modes are plotted as a function of time. If we compare that with figure 3(a),
which is for non-magnetic convection only with the same box size and Ra and E, we
see that the magnetic field has enhanced the importance of the (0, 1) and (1, 0) modes
at the expense of the (1, 1) and (1,−1) modes. Thus the magnetic field has had a
similar effect to reducing the box size, and both effects assist magnetic field generation.
Also, the magnetic field has restored the sequence in which the modes appear, and
which is so evident in figure 2. In figure 3(a), at Ra = 500 but with no magnetic field,
the time ordering of the modes looks rather random. Thus the magnetic field seems
to have partially restabilized the rotation of the convection rolls which occurred at
lower Ra following the Küppers–Lortz instability. In figure 10(b), the amplitude of
the total magnetic energy Em, the z-averaged amplitude of the mean field (b̄2

x + b̄2
y)

1/2,
and the field phase angle (the mean field direction tan−1 b̄y/b̄x) are plotted against
time. We can compare figures 10(a) and 10(b) to see how the field correlates with the
changing convection pattern. The mean field direction correlates strongly with the
roll axis; the field turns through 2π as the convection goes through a full cycle. At
t = 0.06, the (0, 1) mode, a roll with axis in the x-direction, is dominant and the mean
field makes a zero angle with the x-axis. At t = 0.12, the (1, 0) roll is dominant, and
the field angle is now 1

2
π. The field is somewhat suppressed at t = 0.19 when the (1, 1)

mode is dominant, but recovers at t = 0.24 to make an angle of π with the x-axis
and so on. The period of the cycle is approximately 0.35 dimensionless units.

The rotation of the convection pattern is achieved by the four modes discussed
in § 3 successively growing and decaying. In consequence, the flow is more three-
dimensional during the transition from one mode to the next than it is when one of
the modes completely dominates the rest. It is noticeable that the total field energy
grows most when the flow is most three-dimensional, and decays when the flow is
most two-dimensional, i.e. when one of the rolls dominates the others. (Note that
the maximum field is in phase with the time of maximum dominance of a particular
mode.) In consequence, the field strength oscillates during the cycle, growing at the
transition times and decaying when the flow is too two-dimensional.

During the kinematic regime, the energy in the mean field is significantly smaller
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Figure 9. A snapshot of magnetic field for the case Ra = 500, E = 0.001, q = 1, α = β = 2π
(Run C), the subcritical case in the saturated regime. (a) Temperature at intervals of 0.03 in the
(x, y)-plane z = 0.25. (b) Bz at intervals of 0.3 in the (x, y)-plane z = 0.25. (c) Temperature at
intervals of 0.1 in the (y, z)-plane. (d) Bz at intervals of 0.3 in the (y, z)-plane. (e) Bx at intervals of
0.6 in the (y, z)-plane. (f ) By at intervals of 0.6 in the (y, z)-plane. (g) ux at intervals of 20.0 in the
(y, z)-plane. (h) uz at intervals of 20.0 in the (y, z)-plane.
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Figure 10. (a) The root-mean-square velocity, Ulm, of the modes (1, 0), (1, 1), (0, 1) and (1,−1),
as a function of time in the saturated cycle for Ra = 500, E = 0.001, q = 1, α = β = 2π.
(b) Total magnetic energy Em, the mean field (b̄2
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1/2 and the mean field phase angle tan−1 b̄y/b̄x
as functions of time.

than the energy in toroidal and poloidal components. This is however reversed in
the saturated field, where the mean field is as large or larger than the horizontally
fluctuating components (figures 6(a) and 6(b)). This is part of a more general trend
in which the magnetic energy moves down the spectrum as saturation occurs, the so-
called ‘inverse cascade’ (Gilbert & Sulem 1990). It can be seen crudely by comparing
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the snapshots of the field in the saturated state (figure 9) with the kinematic snapshot
(figure 7). A more systematic view can be obtained by comparing the energy spectrum
(over modes (l, m)) in the saturated regime, shown in figure 11, with the corresponding
figure 8 for the kinematic regime. Figure 11(a) presents log10 Eu(l, m), the power
spectrum of u and figure 11(b) displays log10 Em(l, m), the power spectrum of B taken
from a snapshot in the saturated part of Run A. Note that in the kinematic regime
the magnetic energy ranges over only 6–7 orders of magnitude from (1, 0) to (1, 31),
while kinetic energy ranges over about 16 orders of magnitude for the same range
of wavelengths. In the saturated regime, the magnetic energy range is greater, so
that the energy has become more concentrated in the longer wavelengths while the
kinetic energy range is much shorter, with the result that there is much more power
in shorter wavelengths than for the kinematic regime. This has implications for the
numerical method: to study pure convection (at moderate Ra and E) it is possible
to use relatively low truncations, whereas for the kinematic dynamo regime we need
rather high truncations for the field. As we approach the saturated regime, the need
for the high resolution for B is reduced, although greater resolution is required for u.
In practice, saturated solutions are, overall, easier to obtain than kinematic solutions
as the savings on B outweigh the extra work required on u.

An important issue is to discover the mechanism by which saturation takes place. It
is sometimes assumed that saturation occurs at approximate equipartition of kinetic
and magnetic energy, on the grounds that the inertial stresses then approximately
balance the magnetic stresses in the momentum equation. This is clearly inappropriate
in our case, as inertial terms are ignored in this calculation. Here a balance between
Lorentz and Coriolis forces is more appropriate, so we expect saturation to occur
at Elsasser number of order unity. In the geodynamo, which motivated our study,
the inertial forces are also small, and balancing Lorentz and Coriolis forces gives a
sensible estimate for the field strength in the core. The magnetic energy in the Earth’s
core is many orders of magnitude greater than its kinetic energy (as measured in the
rotating frame).

Figures 6(a) and 6(b) indicate that the field saturates at an Elsasser number slightly
greater than unity, showing that the Lorentz force is playing a significant role in the
saturation process, as expected. The average velocity is slightly lower in the saturated
regime than in the kinematic regime, in line with the näıve view that the Lorentz
force impedes the flow, as expected from magnetoconvection theory. In Run G, the
kinetic energy averaged over the kinematic regime was approximately 10 100 and
the equivalent value averaged over the saturated regime was 7250, corresponding to
averaged magnetic Reynolds numbers of 142 and 120 respectively. The corresponding
typical average magnetic Reynolds numbers in Run A are about 630 in the kinematic
regime and 450 in the saturated regime. We cannot, however, simply explain the
saturation as a reduction of the flow velocity to the critical value at which dynamo
action occurs; the form of the convection is very important. When Ra is smaller, Rm
in the saturated regime is smaller than the saturated Rm at larger Ra.

5. A model of the dynamo
In addition to the snapshots of the field and the flow, we have also studied videos

of the solutions. On the basis of these we present a simplified picture of the dynamo
process. The observed fields and flows are chaotic, with a significant amount of small-
scale structure, so it is not easy to identify the essential processes from the inessential
‘detail’. The picture described below was obtained by emphasizing the role of the
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Figure 12. (a, b, c) Cartoon of the model for dynamo action.

terms in the induction equation that seem to be dominant, and ignoring the rest. The
picture does seem to fit the behaviour observed in the runs performed, and it can
be compared with the snapshot of the true solution shown in figure 9. It is hoped
the model may prove useful in developing physical understanding of the essence of
the dynamo mechanism, and hence in developing an intuition for dynamo action in
different parameter ranges.

We start with the convection modelled by two perpendicular rolls which alternate
approximately sinusoidally in time. We can identify these with the (1, 0) and (0, 1)
rolls. Suppose at time t = 0 the x-roll (0, 1) is dominant. Because the convection roll
is in a rapidly rotating environment, there will be strong flows along the x-roll as
indicated in figures 5(c) and 9(g) and idealized in the cartoon shown in figure 12(a);
see also Chandrasekhar (1961). The vertical motion is closely aligned with hot rising
fluid and cold falling fluid, as expected, and the alignment of the horizontal flow
along the roll is a very robust feature of nonlinear convection.



334 C. A. Jones and P. H. Roberts

The mean field will be primarily aligned in the x-direction, but since the y-roll has
only recently decayed, a component of the field in the y-direction remains, and we
assume that initially this y-component of field is approximately uniform across the
layer and negative. The velocity field of the x-roll will act on this y-field to stretch
out new vertical fields as indicated in figure 12(b). Note that the vertical fields are
out of phase in y with the rising and falling plumes, occurring principally in the roll
centres.

Now consider the x-component of the field stretched out by the rotation-induced
flows in the x-direction. In the middle of the layer the vertical velocity shear is
dominant, and this stretches out positive x-field (see figure 12(c)). Note that, because
the induced vertical field is in phase in y with the x-velocity, positive x-field is
generated in every cell centre. However, negative x-field is induced near the boundaries
by the horizontal shear acting on the original horizontal y-field, indicated by the dark
semi-elliptical regions in figure 12(c). Indeed, if we consider a single field line, since it
has no x-component of velocity at the y-coordinates of the rising and falling plumes,
there must be just as much stretching in the negative x-direction as in the positive
x-direction. The important point is that the negative x-field, because it is created near
the insulating boundary, escapes from the system quite quickly. Recall that, according
to the argument below (2.23), no net field b̄x or b̄y can develop if the boundaries are
perfectly conducting, so that any mechanism that generates mean field in our model
must invoke diffusion of field out of the boundaries at some stage. In consequence,
we are left with a net positive mean field in the x-direction.

If the roll remained two-dimensional, our mechanism could not sustain a dynamo
since we originally assumed an approximately uniform y-directed field which is not
regenerated. With the gradual diffusion away of the y-component of the field, the
larger mean field in the x-direction will also start to fall. At this point, however, the
roll turns through 90◦, so that the mean positive x-field is now perpendicular to the
roll. With the roll turned through 90◦, this old mean field is exactly what is needed to
start the next quarter of the cycle off again. The mean field produced in this second
quarter of the cycle is in the positive y-direction. After a further 90◦ turn, this positive
y-field serves as the seed for the roll which is now aligned again in the x-direction
generating negative x-directed field in the third quarter of the cycle, and in the last
quarter of the cycle the negative y-directed field which was required at the start of
the cycle is generated.

This picture fits in with the results shown in figures 10(a) and 10(b). The start of
the cycle given above occurs at about t = 0.03 where the x-roll is established and
building. The mean field (the dashed line) is starting to build in the x-direction (phase
angle 0), using the previous negative y-component. At t = 0.07 the field has peaked,
and the phase angle is close to 0, i.e. aligned with the x-roll. Now there is no more
y-field left to generate mean x-field, and the mean x-field starts to fall. By t = 0.1 the
x-roll is rapidly declining and the (1, 0) y-roll is growing. The phase angle of the mean
field rotates to 1

2
π as positive y-field starts to build up during the second quarter of

the cycle. The third and fourth part of the cycle behave similarly, except that at about
t = 0.19 the (1, 1) roll makes a brief appearance. This does not seem to be effective
in field generation (we ignored this mode in our model for simplicity) and the next
growth of mean field starts at about t = 0.22 when the (0, 1) x-roll is strong. Again
there is a sharp rise in mean field, this time in the negative x-direction (phase angle
π). At this point the negative y-roll comes in and we start the fourth quarter of the
cycle.

We therefore expect four peaks in the energy per cycle, defining the cycle as the
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Figure 13. The weighted horizontal components of the e.m.f. Ēx and Ēy are plotted as functions of
time. Also shown are the z-averaged components of the mean field b̄x and b̄y scaled up by a factor
5. Parameter values are as in figure 10: Ra = 500, E = 0.001, q = 1, α = β = 2π.

approximate time taken for the mean field to go through a complete rotation. The
mean field is the largest contributer to the total field energy, but it is clear from
figure 10(b) that the total energy peaks a little earlier than the mean field in the cycle.
This can be explained by the vertical fields generated in our model mechanism which
develop before they are stretched out to form the horizontal mean field.

Since α-effect models have been used extensively in the study of nonlinear dynamos,
it is of interest to study the mean e.m.f. produced in our model. The horizontal
components are defined as

Ex,y(z) = 〈u× B〉x,y. (5.1)

The mean field components, bx and by , have the symmetric part about z = 0 generally
dominant over the antisymmetric part, so it is natural to take the z average as a
measure of their strength. The mean e.m.f. is, however, predominantly antisymmetric
about z = 0, so we measure its strength by including a factor z in the integral,

Ēx,y =

∫ 1/2

−1/2

z〈u× B〉x,y dz, (5.2)

so that the antisymmetric part is measured. In figure 13 we have plotted Ēx and Ēy
along with the vertically averaged mean fields b̄x and b̄y as functions of time, for the
same starting values as in figures 10(a) and 10(b) (though it has been run for longer).
In an α-effect model, the turbulence is assumed to be on a smaller scale than the mean
field, and so there is a time-independent relation between the mean e.m.f. and the
mean field given by Ei = αijbj , with αij some constant tensor: in nonlinear models, α
is sometimes allowed to vary with the mean field b. The difficulty with modelling our
system in this way is that the time correlation between the mean field and the mean
e.m.f. is not that strong, as can be seen from figure 13. Although there is a tendency
for Ēx,y to have the same sign as b̄x,y , there are intervals of time during which they
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have opposite sign, and also intervals when the components of b̄ are increasing while
the components of Ē are decreasing.

6. Low Ekman number regime

At low E the timestep has to be shortened and the resolution increased to resolve
the Ekman layers, and cope with the appearance of smaller scale structures. In
consequence, it is very expensive to do long runs at low E; so runs B and D were
started with a finite-amplitude magnetic field. We therefore do not know whether the
dynamos at these values of E can grow from small amplitude or whether they are
subcritical, as runs C, E and F were. However, figures 6(a) and 6(b) suggest that,
once the regime has saturated, a relatively steady state is achieved quite quickly. So
although Runs B and D were continued for less than a magnetic diffusion time we feel
the results are significant. Figure 14(a) gives the Run B results, and figure 14(b) the
Run D results. Comparing with figure 6(a–c), we see that the most noticeable feature
is that the magnetic field is stronger and the ratio of the mean magnetic field to
the other (poloidal and toroidal) components is significantly greater. The larger field
strength at lower E is slightly surprising, because the field strength is determined by
balancing the Lorentz force in the equation of motion with the other forces, and one
of those is the viscous force which is proportional to E. Indeed, for the geostrophic
part of the flow the Lorentz force can only be balanced against the viscous force, and
in the Ekman regime of nonlinear dynamos, |B| scales with E1/4. This suggests that
a Taylor state must have been achieved; we examine this in more detail below.

Snapshots of the field and flow for Run D are given in figure 15(a–h), which may
be compared with figure 9. At lower E, smaller scales in the flow are more evident,
as would be expected given that viscosity is less important. This is also reflected in
smaller lengthscales emerging in the field, although the mean field is large. The larger
field strengths also mean that the effect of the Lorentz force on the flow is more
evident; this is best seen in videos of the flow, where the deflection of rising and
falling thermal plumes by regions of strong magnetic field can be seen. Nevertheless,
corroboration is provided by figures 15(c) and 15(f), where the rising thermal is seen
to be blocked from reaching the top boundary by a region of strong y-field near that
boundary; figure 5 shows how close the thermal plume gets to the boundaries in the
absence of magnetic field. There is also a tendency, again more visible in videos, for
the mean field to be weaker in the plumes and stronger in the comparatively stagnant
regions. This separation of the convecting region into zones of convection and zones
of strong magnetic field has been observed in models of magnetoconvection (Weiss
et al. 1996; Tao et al. 1998).

6.1. Taylor’s constraint

The velocity field in both the moderate and low Ekman number cases shows no
evidence of a substantial mean flow (l = m = 0 component) developing. Since the
saturated field is large, the Elsasser number and hence the Lorentz force are strong
in these solutions. From (2.8), (2.12a) and the boundary condition on f, (2.18), we
obtain ∫ 1/2

−1/2

[E∇2ωz + ẑ · ∇× (j × B)] dz = 0. (6.1)
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Figure 14. As for figure 6: (a) Run B (Ra = 500, q = 5, E = 0.0002, α = β = 2π);
(b) Run D (Ra = 500, q = 1, E = 0.0002, α = β = 2π).

Taylor (1963) suggested (for the spherical problem) that at low E the magnetic field
would satisfy a constraint, which for our Cartesian geometry is∫ 1/2

−1/2

ẑ · ∇× (j × B) dz = 0, (6.2)
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[–0.3126, 0.3146](a) [–4.0412, 3.5737](b)

[–0.5000, 0.5000](c) [–2.4482, 2.2682](d)
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[–391.9803, 265.1877](g) [–327.2313, 171.9247](h)

Figure 15. A snapshot of magnetic field for the case Ra = 500, E = 0.0002, q = 1, α = β = 2π
(Run D). (a) Temperature at intervals of 0.03 in the (x, y)-plane z = 0.25. (b) Bz at intervals of 0.4
in the (x, y)-plane z = 0.25. (c) Temperature at intervals of 0.1 in the (x, z)-plane. (d) Bz at intervals
of 0.25 in the (x, z)-plane. (e) Bx at intervals of 0.3 in the (x, z)-plane. (f ) By at intervals of 0.6 in the
(x, z)-plane. (g) ux at intervals of 30.0 in the (x, z)-plane. (h) uz at intervals of 40.0 in the (x, z)-plane.
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[–0.9002, 1.000](a) [–0.8434, 0.9883](b)

Figure 16. Taylor’s constraint plots in the (x, y) plane for Ra = 500, q = 1; (a) E = 0.001,
(b) E = 0.0002.

to hold at every value of x and y. Note that this is a stronger constraint than in
the spherical case, where the integral over the Taylor cylinder must be zero for every
value of s, the distance from the rotation axis (e.g. see Jones 1991). The fact that the
constraint holds over a plane rather than a line is a consequence of the fact that every
curve in the (x, y)-plane is a geostrophic contour in our geometry.

The question of whether Taylor’s constraint is satisfied in dynamic dynamos as
E → 0 is still controversial: if small-scale features do not appear in the flow, and the
magnetic field remains at O(1) strength, the constraint must be satisfied. If the only
small-scale features are the Ekman layers, then in the limit E → 0 the Ekman term
in (6.1) becomes O(E1/2) (see e.g. Fearn 1994) and so either the field remains at O(1)
strength and satisfies Taylor’s constraint or it reduces to O(E1/4) strength and need
not satisfy (6.2): the latter case is known as an Ekman state solution.

To obtain a meaningful plot of whether Taylor’s constraint is satisfied or not, we
plot in figure 16 ∫ 1/2

−1/2

ẑ · ∇× (j × B) dz

/∫ 1/2

−1/2

ẑ · |∇× (j × B)| dz, (6.3)

which is a measure of the degree to which ‘Taylorization’ has occurred (Anufriev,
Cupal & Hejda 1995). Taylor’s constraint should be satisfied not by the field becoming
small, but by negative and positive contributions to the z-integral cancelling in the
numerator of (6.2). Otherwise, magnetic field becomes small as E decreases, an
undesirable feature for a geodynamo model.

Figures 16(a) and 16(b) are for E = 10−3 and 2 × 10−4, respectively. Surprisingly,
there is no very clear evidence of Taylorization; the average values of the modulus
of the quantity plotted is about 0.3 in both cases. These figures are of course for a
snapshot in time, but there is no evidence to suggest these figures are untypical. The
low-order Fourier modes do however satisfy Taylor’s constraint: the horizontal aver-
ages corresponding to figures 16(a) and 16(b) are close to zero; the small lengthscales
apparent in the figures suggested that the low-order harmonics might also be small and
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this was indeed confirmed. In consequence, it appears that Taylor’s constraint is sat-
isfied in a progressive manner as E → 0. As E gets smaller, finer-scale field structures
arise, induced by the small-scale velocity field. Although Taylor’s constraint is satisfied
for fields with wavenumbers up to some viscous limit lv , there will always be a range
of wavenumbers l > lv for which Taylor’s constraint does not hold. In consequence, it
is not clear that (6.3) will ever tend to zero uniformly in the limit E → 0, even though
the large-scale components of the field are clearly satisfying Taylor’s constraint.

7. Conclusions
Although the nonlinear plane layer dynamo is a difficult problem, it offers a good

hope for understanding fundamental dynamo processes. The computing resources
required for this problem are considerably less than those required for the spherical
problem; nevertheless, they are very substantial. To get to low Ekman number the
resolution must be increased and the timestep reduced, substantially increasing the
cost of the computation. It should be noted that here we have got well resolved
results at comparatively low truncation compared to some studies of non-rotating
(or slowly rotating) convection-driven dynamos, but this is a consequence of the
parameter regime we are working in, and the magnetic boundary conditions applied.
The dynamo we have found is quite efficient, in that it can operate at moderate
magnetic Reynolds numbers which is why we have been able to perform long runs
and study the mechanism in some detail. As computers increase in speed, it should
become possible to explore some of the more difficult areas of parameter space,
such as lower values of E. The plane layer problem is a valuable testbed on which to
develop new numerical techniques and to explore the dynamics of nonlinear dynamos.

The nature of the non-magnetic convection problem has been shown to have an
important influence on the dynamo process. The non-magnetic convection problem
is far from being completely understood; in this investigation a wealth of different
dynamical behaviour was found, which needs systematic analysis. Only those regimes
found in the particular parameter values we considered have been explored in detail,
and it is likely that this is a very rich problem.

The existence of dynamo action in these models has been well-established, as has
subcritical behaviour. The kinematic dynamo problem behaves in a way broadly
similar to that found in fast dynamo investigations, but an encouraging feature is
that the saturated magnetic regime behaved in a somewhat more easily understood
fashion, at least in the parameter regime investigated here. The mechanism of field
generation has been examined and a simplified model proposed, which could be
further developed. The Küppers–Lortz instability leading to the rotation of the
convection pattern, together with the key role played by the mean field are important
features here.

A start has been made on the problem of the low Ekman number dynamo problem,
without the use of artificial assumptions such as hyperdiffusion. Much remains to
be done in this area, but the suggestion from these numerical experiments is that
the convecting region may divide into regions where the mean field dominates and
little convection occurs, and comparatively thin regions where viscously controlled
plumes carry the heat flux. If confirmed, this is an attractive picture capable of further
modelling.
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Appendix. Numerical methods
Three-dimensional nonlinear MHD calculations require significant computational

resources, so the choice of numerical method is quite critical. The choice will also
depend on the machine architecture; the code used here was implemented on fast
but non-parallel workstations. The general techniques used here are not original, but
there are a number of different ways of implementing these techniques. The procedure
is therefore outlined so that its performance may be compared with that of other
methods.

We expand the scalar e appearing in (2.6) as

e =

Nx∑
l=−Nx+1

Ny∑
m=−Ny+1

Nz+2∑
n=1

elmn exp i(lαx+ mβy)Tn−1(2z). (A 1)

Similar expansions are used for g, h and θ, but the expansion for f over z goes up to
Nz + 4 to accommodate the four boundary conditions satisfied by f at z = ± 1

2
. Not

all the complex elmn are independent, because the reality conditions, typically

el,m,n = ē−l,−m,n (A 2)

must hold. The independent components for e–h are then

1 6 l 6 Nx,−Ny + 1 6 m 6 Ny, and l = 0, 1 6 m 6 Ny, (A 3)

the l = m = 0 modes being replaced by the mean quantities Ux,Uy, bx and by which
are expanded over z only. The θ expansion has independent components

1 6 l 6 Nx,−Ny + 1 6 m 6 Ny, and l = 0, 0 6 m 6 Ny. (A 4)

At each timestep, the momentum equations (2.8), (2.9), (2.14) and (2.15) are solved
first. The discrete equations are obtained by collocation at the Nz zeros of TNz

(2z)
for each independent mode (l, m) of (A 3) and (A 4). The nonlinear Lorentz force
terms are evaluated by calculating j and B in spectral space from the expansions of
g and h, and converting these six quantities to real space, i.e. evaluating them on the
z-collocation points and a 2Nx × 2Ny regular grid in x− y space. The vector product
j × B is then found on the mesh, and the resulting three components are converted
back to spectral space. The z-components of the curl and curl curl of the Lorentz
force (together with the appropriate mean values) are the quantities required to solve
(2.8), (2.9), (2.14) and (2.15).

The linear terms in both the momentum equations and the other equations are
handled by pre-computing the inverse of the matrices derived from the diffusion
operator; this has the slight disadvantage that this is an order-N4 process (assuming
Nx, Ny and Nz are all O(N)), while the computation of the transforms of the
nonlinear terms is only O(N3 logN). Nevertheless, because of the complexity of the
nonlinear terms, the time spent in computing the linear terms was small compared
to that computing the nonlinear terms. An alternative would be to differentiate
(and integrate) the Chebyshev expansions at each timestep, only an O(Nz) operation
per horizontal mode; however, because of the high order of the system a large
number of differentiations are required, so that this will only become efficient at
large Nz . A more pressing reason for adopting the alternative method is likely to
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be storage considerations; the pre-computed matrices are O(N4) and their size will
create difficulty at large Nz .

Once the momentum equations have been solved, we can feed in the velocities to
advance the induction and temperature equations to the next timestep. The nonlinear
terms in these equations are handled similarly to those in the momentum equation;
since B has already been computed on the mesh, a significant saving is possible here.
The equations are advanced using second-order Crank–Nicolson for the diffusion
terms; the nonlinear terms are handled explicitly. A predictor-corrector scheme was
used; the predictor advances the solution using a first-order Euler step for the
nonlinear terms; these nonlinear terms are then averaged between the original and
predicted values, and then a second-order corrector step is taken. This allows the
timestep to be controlled as the integration proceeds. This seems to be important for
this problem, as ‘difficult’ time intervals occur during which the timestep has to be
significantly lower than its average value.

The most time consuming operation is the conversion of the components of j , B
and u from spectral space to the mesh and the conversion of the nonlinear terms
back to spectral space. Standard FFT routines are optimized for large N transforms;
here we have to do comparatively short transforms (typically N = 24, 32, 48 and 64)
many times. Significant savings were obtained using purpose built transforms for
these lengths.

The appropriate truncation level for our parameter regime was determined by
integrating the equations forward for a comparatively short time (typically a thousand
timesteps) at different resolutions. Resolution was judged adequate when the results
differed from higher truncations by less than 1%. It should be noted that because
our solutions are all chaotic, long time runs at different resolution will inevitably
differ considerably, because the solution at large time is sensitive to initial conditions.
Nevertheless, the hope is that the general behaviour will not be affected.

As E is reduced, the timestep as determined by our automatic procedure is reduced
approximately proportionally as suggested by Walker et al. (1998). This is a conse-
quence of our explicit treatment of the nonlinear terms. This is a strong limitation on
reducing the value of E; not only does the number of modes need to be increased,
but the number of steps per diffusion time required rises also, unfortunately making
it impractical to go much below E = 10−4.
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